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CURRENT AND DRIVING POINT 

IMPEDANCE COMPUTATIONS FOR 

LONG RESONANT ANTENNAS 

Patricia A. Comella 

ABSTMCT 

The solution of the Hallen integral equation for a resonant cylindrical an- 
tenna is presented in a simple trigonometric form. The method of solution i s  
discussed. A Romberg integration scheme, used in the antenna calculations, i s  
given. The computations a re  discussed and a sample of results i s  shown. 
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CURRENT AND DRIVING POINT 

IMPEDANCE COMPUTATIONS FOR 

LONG RESONANT ANTENNAS 

I. DESCRIPTION OF THE EQUATION 

Finding a representation for the current on long cylindrical antennas that i s  
both simple and in good agreement with more complicated formulations i s  diffi- 
cult because such a representation is an approximate solution to the Hallen in- 
tegral equation for the current,  I (z) : 

where 

K ( z ,  z ' )  = R-' exp(- j p o R )  

with 

L o  = 120 ohms, p, = 2 n / h  , 

a = radius of the antenna 

P,h n n / 2  n = 1,3, .... 

2h = length of the antenna in wavelengths 

The antenna is center-driven by the delta-function generator, V, . 

This i s  an integral equation of the first kind which has the form 

f ( z '  )K(z ,  zl) d z '  = h ( z )  , Jab 
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where K and h a r e  known, f unknown, functions of z ;  as opposed to integral 
equations of the second kind which have the form 

f ( z l )  K ( z ,  z l )  d z '  + h ( z )  = f ( z )  , 5% 
where again h and K are known, f unknown. 

From the viewpoint of the physicist equations of the latter type a r e  easier 
to solve because a specific formulation for f does not have to be plwposed be- 
fore numerical methods of analysis can be meaningfully employed tb obtain the 
desired solution. Quite the opposite with equations of the former wpe:  experi- 
ence shows that a model for f , which adequately describes the phys'ical situation 
as known from experiment, must be devised before the parametric values ob- 
tained in the approximate solution will yield a good fit to the experimental data. 
That i s ,  no amount of mathematical analysis, however excellent cggn make a poor 
model for f yield good results. 

Using experimental data as a guide, King and Sandler(3) have derived a 
simple trigonometric current representation for long resonant antennas. The 
antenna current consists of a shifted sine and cosine distribution with coefficients 
A and B. It has the following final form: 

I z ( z )  = - j A  cos [,Bo(z-mo)] + B cos ( f loz)  f g ( z , m o )  

where 
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'PL = Ca (h, h)  - Ca (h-mo, h) 

Ca(h, z )  = 1; cos (,Boz') K(z,  z ' )  d z '  

The phase shift mo must be determined from a transcendental equation given 
by 

Once the value of mo is calculated, A and B can then be determined from 
Equations (3) and (4). 

The first model for the current gave a poor fit to the experimental data be- 
cause (5) was not well formulated. Consequently, this equation was modified so 
that the final representation for Iz (z) compared excellently with both experi- 
mentally obtained and theoretically calculated currents .( ) 
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II. METHOD O F  SOLUTION 

All integrals were evaluated numerically. A set of recursion formulas, 
called a Romberg scheme for Simpson sums,  was used. The method is based on 
repeated interval halving until the desired degree of accuracy is  reached. i 

The function f ( m )  is defined by 

Clearly, a zero of (13) is a solution of (12). From physical considerations mo i s  
such that 0 < mo < .25. 

The Newton-Raphson method with suitable restrictions to insure that ml w a s  
in the first quadrant for i = 1, 2 ,  ..., N ,  was  chosen to find mo.  This is an itera- 
tive procedure of the form 

The recursion formula is given by setting b ( m )  = m - f ( m ) / f ' ( m ) .  The resulting 
relation m i + l  = +(mi)  is the recursion formula. The sequence {mn) converges 
to the fixed point, mo = 4 ( m o ) ,  of 4 provided that m l  is sufficiently close to mo,  
that 0' ( m )  is continuous in an interval around mo, and that 14' (mo) 1 < 1.( 5 ,  In 
the Newton-Raphson method 4' ( m )  = f ( m )  f"  ( m ) / (  f ' ( r n ) )  *, so that 6' (mo) = 0 
provided that f is twice continuously differentiable and that f ' ( m o )  f 0. 

The analytic expression for f ' ( m )  would be extremely difficult (and tedious) 
to find and equally cumbersome to programe for evaluation. Thus the derivative 
of f (rn) was approximated by the difference formula 

f (m t A m )  - f (m) 
A m  f ' ( m )  = 9 

where Am was sufficiently small. 
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III. ROMBERG SCHEME FOR NUMERICAL  INTEGRATION(^) 

This section outlines a quadrature scheme, based on interval halving, which 

evaluates numerically the definite integral f (x) dx, where f (x) is a continuous 

function that can be calculated by some means at any point x. (To facilitate dis- 
cussion the interval [ a  ,b] is normalized to [ 0,1] by a suitable transformation 
on x). First a recursion formula for trapezoidal sums is described. The 

trapezoidal rule for mesh size,  h, gives the approximation, T, to f (x)dx: 

I: 
I,' 

T 
h - 2 [ f (o )  + 2 ( f ( h )  t f ( 2 h )  f . . . t f(1- h ) }  f f (I)] . ( 4 )  

1 i - 1  The recursion expresses the irh trapezoidal sum, Ti, of mesh-size, h = (3) 
as 3 the sum of Ti - 
(2 j - l ) /2  ' ', j = 1 , 2 ,  ..., 2'- 2 .  Then a second recursion formula is derived 
to express the i t h  Simpson sum, Si, of mesh-size, h = (+) i ,  as a linear com- 

bination of Ti 

, 
and the mean of the values f (x) when x takes on the values 

and Ti. Simpson's rule approximates f (x) d x  by the sum, S ,  I' 
f ( o )  t 4 { f ( h )  + f ( 3 h )  t . . . f f ( 1 - h ) )  

t 2 ( f ( 2 h )  f . . . f f ( 1 - 2 h ) )  t 

for the mesh, h. 

This recursive method has the outstanding advantage that as one decreases 
the mesh size f rom (4)" to ( $) "' l ,  one need compute only 2 " new points, instead 
of the 2"' 
Furthermore,  the mesh-size can be made a function of the convergence criterion. 

+ 1 points usually computed. Thus, computation time is saved. 

In Figure 1, the a rea  of trapezoid ACDF, denoted by T (+), 3 being the mid- 
point of its base along the X-axis, is a rough approximation to the area under the 
curve y = f (x) in the interval [ 0,1] .  Define 

T l  
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Figure 1. 

Hopefully the sum of the area of trapezoid ABEF,  denoted by T($; and of BCDE, 
designated T ( i ) ,  is a better approximation, T,, to the desired as-. Thus, i f  
T ($ )  , T( $) and T, are defined by the following relations 

T ( i )  = + [ f ( i )  t f ( l ) ]  (17) 

T, - - T ( $ )  t T ( $ )  [T1 t f ( f ) ]  

it is hoped that 

In the same manner the a rea  under y = f (x) may be approximated by the four 
trapezoidal areas : 
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T(;) $ [ f ( + )  + f ( l ) ]  

The sum of these a reas  in (18) is T3 where 

f ( + >  f < + )  

T3 [T2 t 2 

Using the first inductive principle one can prove that if 

TI = [ f ( O )  t f ( l ) ]  

then 

where 

For  the unnormalized interval [ a,b] 

and 
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where 

I 

~ 

The following paragraphs will now establish a linear relatiombip between 

elements of the sequence {E} of successive approximations to the definite 

integral f (x) d x  using Simpson's rule and the elements of the sequence {Ti } 

It i s  obvious that 

In mechanical quadrature f (x) is replaced by an interpolating formula inte- 
grated between the l imits,  a and b ,  (in this discussion 0 and l), df ,the definite 
integral. For  Simpson's rule the interpolating formula is a polynnmial of de- 
gree 2,  denoted P2(x) .  Therefore, a linear combination, s,, of TI and T,, is 

required which yields exactly the value of the definite integrals, P,(x) d X .  

For  example, if f (x) 
I,' 

= x 2 ,  

with p + q = 1. Since T, = 4, T, = f ,  the following system of linear equations 
is solved: 

1 p t q  = 1 

obtaining p = - T ,  1 q = 3, 4 so that 

I S, = (4T2 - T , ) / 3  



Geometrically, Simpson's rule  replaces f (x) by parabolas (the trapezoidal 
rule, by chords), as follows: for  a mesh of 3, a parabola, denoted by P2,%(x)* ,  
is passed through the points ( O , f ( O ) ) ,  (4, f(i)), (1, f (1 )  ), which replaces f (x) in 

the interval [ 0,1] .  Thus, f (x) d x  is approximated by P,, ,(x)dx. If the I,' 
interval [ 0,1] is divided into quarters,  f (x) can be approximated by the sum of two 
parabolas, P, Jx) through the points (0, f (0) ) , ($, f ($) ) , (t, f (i) ) ; and P, , ~ (x) 
through (i, f (i) ), ($, f ( 3 )  ), (1, f (1)  ). Integrating this sum one obtains, using (24) 

and (20') for intervals of length 3, the approximation, S, ,  to 

S ,  = ( 4 T 3  - T 2 ) / 3  (25) 

since 

T ; = I f o  4 [ ( ) f < 3 > ]  T'; = t [ f ( + )  t f ( l ) ]  

Si = (4T; - T ; ) / 3  S'; = ( 4 T i  - T ' ; ) / 3  

S ,  = Si t S ;  = [Ti t T'; t f ($ )  t f($)] / 3  = (4T, - T , ) / 3  

where 

' applies to sums on the interval [ 0 ,  i] , 

By dividing the interval [ 0,1] into eighths, it can be shown that 

S ,  = (4T4 - T 3 ) / 3 .  

*p ,,,, (x) i s  a parabola which replaces f (x) in the sub-interval with midpoint, m. 
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Generally, the recursion relation is of the form 

The sequence { Sn } is a sequence of successive approximations to f (x) dx, 
using Simpson's rule with mesh-size h = h n  = 2'". I: 

f To utilize the Romberg method in evaluating integrals of the form f (x) dx, 

a S / 3 6 0  Fortran IV program was written. It is available from the Goddard Pro-  
gram Library. ( * ) This program is especially recommended in cases where an 
optimal, but unknown, mesh-size is needed in order to approximate an integral 
to a pre-determined number of significant figures. Test cases indieate that up 
to six figures of accuracy can be obtained using this program. 

IV. DISCUSSION OF COMPUTATIONS A N D  RESULTS 

The computations were done on the IBM 7094-7040 DCS and the IBM S/360 
ASP systems at Goddard Space Flight Center. The IBM S / 3 6 0  Fortran IVY 
Version H,  program of the King-Sandler theory is documented a d  available from 
the Goddard Program Library, ( ) 

To evaluate the functions containing integrals, (10) and (11) were split into 
their real and imaginary parts. Each of the resulting integrals was  then approxi- 
mated separately using Program N o .  MOO077 in the Goddard Program Library. 
This program utilizes the method discussed in Section III. 

Successive approximations, Si and S i + l  , to an integral, I , were tested for 
convergence as follows: 

given E ,  if  

then 

I = si+l 

For  all of the results given in this paper E = l o m 3  was chosen because: 

I 
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1) if E > the mo obtained in the solution of (13) differed significantly 
from the m o  for E = 

2) the mo obtained for  E < 
E = 

agreed to three figures with that for 
but the computational times differed greatly. 

In the Newton-Raphson iterative procedure zero was  approximated by ; 
that is, if  f ( m i )  < mo = m i  the desired zero of (13). Once again this cri- 
terion was established empirically: such a tolerance seemed to give an optimal 
trade -off between time and accuracy. Similar considerations indicated that 
Am = l o m 3  be used in (15). 

Each iteration required two evaluations of (13) which, in turn,  was a function 
of the integrals given by (6),  (7), (8), (9). On the IBM S/360 ASP, 57.5 seconds 
were required to evaluate (13). An average of 5.3 iterations was needed for the 
convergence of the sequence { m i  } to mo . 

However, a good estimate for m l  /A shortened the number of iterations to 
one o r  two; while a bad estimate caused an end of case condition to occur. To 
facilitate the selection of m l / X  for a given h / h ,  a plot of mo/A as a function of 
h/X was made for  completed cases. Figure 2 shows such a graph for Q = 20. 
Since Line I appeared to be an upper bound for the points (h/X, mo/X); and Line I1 
a lower bound, (h/X, m l / A )  less than (or equal to) the corresponding point on 
Line I and greater than (or equal to) that on Line 11 was chosen as the starting 
point. 

Table I summarizes the King-Sandler results for Q = 20. For  a given half- 
length, h /x , the phase shift, m o  /A,  the driving point admittance, Yo, the driving- 
point impedance, Zo, and the coefficients, A and B, calculated using (3) and (4), 
respectively, are tabulated. All computations are to four significant figures. 
The parametric values of h/h, m o / A ,  A and B can then be used in (2) to compute 
the current at any point along the antenna. 

The good agreement between the King-Sandler approximate model and the 
experiments of Altshuler and theories of Wu and King-Middleton for selected 
values of h and Q indicates that this model is an adequate description of cur- 
rents on long resonant antennas. 
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Table I 

Resonant Antenna Parameters 

A, B , Yo in milliohms , Z, in ohms 

R =  20 

h/h 

0.25 
0.75 
1.25 
1.75 
2.25 
2.75 
3.25 
3.75 
4.25 
4.75 
5.25 
5.75 
6.25 
6.75 
7.25 
7.75 
8.25 
8.75 
9.25 
9.75 

10.25 
10.75 
11.25 
11.75 
12.25 
12.75 
13.25 
13.75 
14.25 
14.75 
15.25 
15.75 

mo/A 

0.0455 
0.0719 
0.0853 
0.0941 
0.1005 
0.1056 
0.1098 
0.0521 
0.0526 
0.1189 
0.1212 
0.1233 
0.1251 
0.1267 
0.0813 
0.0553 
0.0555 
0.0823 
0.1333 
0.1344 
0.1354 
0.1364 
0.1373 
0.0573 
0.0576 
0.1396 
0.1403 
0.1410 
0.1417 
0.0976 
0.0857 
0.0592 

Y O  

10.08 - j5.23 
7.70 - j3.04 
6.86 - j2.42 
6.37 - j2.09 
6.03 - j1.88 
5.78 - j1.73 
5.57 - j1.62 
8.68 - j5.29 
8.62 - j5.27 
5.14 - j1.38 
5.03 - j1.33 
4.93 - j l .28 
4.84 - j1.24 
4.76 - j l .20 
6.90 - j3.02 
8.36 - j5.18 
8.33 - j5.17 
6.83 - j3.01 
4.45 - j1.05 
4.39 - j1.03 
4.35 - j l .01 
4.30 - j0.99 
4.26 - j0.97 
8.17 - j5.10 
8.15 - j5.09 
4.14 - j0.92 
4.10 - j0.91 
4.07 - j0.89 
4.03 - j0.88 
6.00 - j2.38 
6.59 - j2.97 
7.69 - j5.01 

Z O  

78.2 + j40.6 
112.3 + j44.4 
129.7 + j45.8 
141.7 +j46.6 
151.1 +j47.2 
158.9 + j47.6 
165.6 + j48.0 
84.0 + j51.2 
84.4 + j51.6 

181.5 + j48.1 
185.9 + j49.1 
190.0 + j49.4 
193.9 + j49.6 
197.5 + j49.7 
121.6 + j53.2 
86.5 + j53.6 
86.7 + j53.8 

122.7 + j54.1 
213.0 + j50.5 
215.7 + j50.6 
218.3 + j50.7 
220.9 + j50.8 
223.3 + j50.9 

88.1 + j55.2 
88.2 + j55.2 

230.2 + j51.2 
232.4 + j51.3 
234.5 + j51.4 
236.6 + j51.5 
144.1 + j57.2 
126.2 + j56.9 

89.9 + j56.5 

A 

3.19 
2.23 
2.00 
1.90 
1.84 
1.80 
1.78 
3.36 
3.36 
1.76 
1.75 
1.75 
1.75 
1.76 
2.40 
3.36 
3.36 
2.42 
1.77 
1.78 
1.78 
1.79 
1.79 
3.36 
3.36 
1.81 
1.81 
1.82 
1.82 
2.25 
2.47 
3.34 

B 

~ 

10.08 - j5.23 
7.70 - j1.03 
6.86 - j0.70 
6.37 - j0.52 
6.03 - j0.40 
5.78 - j0.31 
5.57 - j0.24 
8.68 - j2 .11  
8.62 - j2.09 
5.14 - jO.10 
5.03 - j0.06 
4.93 - j0.03 
4.84 + jO.00 
4.76 + j0.03 
6.90 - j0.92 
8.36 - j2.02 
8.33 - j2.01 
6.83 - jO.91 
4.45 + j0.13 
4.39 + j0.15 
4.35 + j0.17 
4.30 + j0.18 
4.26 + j0.19 
8.17 - j1.96 
8.15 - j1.95 
4.14 - j0.23 
4.10 - j0.25 
4.07 - j0.26 
4.03 - j0.27 
6.00 - j0.54 
6.59 - j0.85 
7.97 - j1.90 
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